Experimental Section³

Substituted anthranilic acids were synthesized according to the methods reported in the literature. The acids (I) used were anthranilic and 5-chloro,⁴ 5-brono-,⁵ 5-iodo-,⁸ 3,5-dichloro-,⁴ 3,5-dibromo-,⁵ and 3,5-diiodoanthranilic.⁶ Acetanthranils (II) were synthesized by refluxing 1 mole of the appropriate acid (I) with 2 moles of Ac₂O or propionic anhydride for 1 hr. After excess Ac₂O was distilled, the acetanthranils which separated as solid masses^{1,2} were used without further purification. Quinazolones were synthesized in good yields by heating equimolar proportions of the appropriate acetanthranils and ethyl *p*aminosalicylate as reported earlier.⁷ The quinazolones (II1) shown in Table I are characterized by their sharp melting points and analyses. Quinazolone hydrazides (IV) were synthesized by refluxing 1 mole of the appropriate quinazolone with 2 moles of NH₂NH₂·H₂O (99-100%) in absolute EtOH for 6-8 hr.⁸ On distilling the excess EtOH, the quinazolone hydrazides which separated as solid masses in good yields were characterized by their sharp melting points and analyses (Table II).

TABLE I SUBSTITUTED QUINAZOLONES (III)

			Mp,	Yielıl.		
X	\mathbf{X}^{t}	R	°C	%	Formula	Analyses
11	Н	CH_3	197	60	$\mathrm{C_{18}H_{16}N_2O_4}$	N
Cl	11	CH_3	132	65	$\mathrm{C}_{18}\mathrm{H}_{15}\mathrm{ClN}_{2}\mathrm{O}_{4}$	N
\mathbf{Br}	H	CH_3	183	55	$C_{18}H_{15}BrN_2O_4$	N
1	11	CH_8	158	58	$\mathrm{C}_{18}\mathrm{H}_{15}\mathrm{IN}_{2}\mathrm{O}_{4}$	N
Cl	Cl	CH_3	223	56	$\mathrm{C}_{18}\mathrm{H}_{14}\mathrm{Cl}_{2}\mathrm{N}_{2}\mathrm{O}_{4}$	Ν
\mathbf{Br}	Br	CH_8	220	54	$\mathrm{C_{18}H_{14}Br_2N_2O_4}$	N
ľ	I	CH_3	178	60	$C_{18}H_{14}I_2N_2O_4$	N
Н	H	C_2H_5	107	50	$C_{19}H_{18}N_2O_4$	Ν
Cl	Η	C_2H_5	172	54	$C_{19}H_{17}ClN_2O_4$	N
Br	Η	C_2H_5	155	45	$C_{19}H_{17}BrN_2O_4$	N
Ι	H	$C_{2}H_{5}$	142	56	$C_{19}H_{17}IN_2O_4$	Ν
Cl	Cl	$C_{2}H_{5}$	160	55	$\mathrm{C}_{19}\mathrm{H}_{16}\mathrm{Cl}_{2}\mathrm{N}_{2}\mathrm{O}_{4}$	Ν
\mathbf{Br}	Br	C_2H_5	164	62	$\mathrm{C_{19}H_{16}Br_2N_2O_4}$	N
Ι	1	C_2H_5	141	54	$C_{19}H_{16}I_2N_2O_4$	\mathbb{N}^n
			• •	×		

^a N: caled, 4.75; found, 4.20.

TABLE II QUINAZOLONE HYDRAZIDES (IV)

х	X'	1)	Mp. °C	Yield.	F	1
л	A.	R	*C	%	Formula	Analyses
П	11	CH_3	162	45	$\mathrm{C}_{16}\mathrm{H}_{14}\mathrm{N}_4\mathrm{O}_3$	\mathbf{N}^{a}
Cl	H	CH_3	168	48	$\mathrm{C}_{16}\mathrm{H}_{13}\mathrm{ClN_4O_3}$	\mathbf{N}^{b}
Br	11	CH_3	175	50	$\mathrm{C_{16}H_{13}BrN_4O_3}$	N
I	11	CH_3	183	55	$C_{16}H_{13}IN_4O_3$	\mathbf{N}^{c}
Cl	-Cl	CH_{0}	220	55	$C_{16}H_{12}Cl_2N_4O_3$	\mathbf{N}^{d}
\mathbf{Br}	Br	CH_3	218	45	$C_{16}H_{12}Br_2N_4O_3$	N
I	L	CH_3	240	58	$C_{16}H_{12}I_2N_4O_3$	N °
11	11	$C_{*}H_{5}$	121	50	$\mathrm{C_{17}H_{16}N_4O_3}$	Ν
Cl	Н	C_2H_5	232	40	$C_{13}H_{15}ClN_4O_3$	N
\mathbf{Br}	П	C_2H_5	225	4.5	$C_{17}H_{15}BrN_4O_3$	N
I	Н	C_2H_5	150	60	$\mathrm{C}_{17}\mathrm{H}_{15}\mathrm{IN}_4\mathrm{O}_3$	N^{\prime}
Cl	Cl	C_2H_5	132	56	$\mathrm{C}_{17}\mathrm{H}_{14}\mathrm{Cl}_{2}\mathrm{N}_{4}\mathrm{O}_{3}$	\mathbf{N}^{g}
Br	Br	$C_{\mathfrak{d}}H_{\mathfrak{z}}$	166	55	$\mathrm{C_{17}H_{14}Br_2N_4O_3}$	Ν
Ι	Ι	C_2H_5	196	54	$\mathrm{C}_{17}\mathrm{H}_{14}\mathrm{I}_{2}\mathrm{N}_{4}\mathrm{O}_{3}$	Ν
						-

 $^\circ$ N: calcd, 18.06; found, 17.50. b N: calcd, 16.26; found, 15.80. $^\circ$ N: calcd, 12.84; found, 12.30. d N: calcd, 14.78; found, 15.50. $^\circ$ N: calcd, 9.90; found, 9.40. f N: calcd, 12.45; found, 13.20. o N: calcd, 14.25; found, 13.80.

Acknowledgment.—The authors wish to express their thanks to Professor K. P. Bhargava and Mr. K. Kishor for their advice and encouragement and to Drs. M. L. Dhar and Nitya Anand for providing facilities for microanalysis. (Frateful acknowledgment is made to the Indian Conneil of Medical Research, New Delhi, for providing financial assistance to one of ns (R. K.) and to Riker Laboratories, Northridge, Calif., for research chemicals.

Heterocycles. III. Syntheses of N-Tosyl-3-carbomethoxy-3-methyl-4-keto-1,2,3,4-tetrahydroquinoline and N-Tosyl-3-cyano-3-methyl-4-keto-1,2,3,4-tetrahydroquinoline¹

Tosio Moriwake and Hirosi Namba

Department of Industrial Chemistry, School of Engineering, Okayama University, Okayama, Japan

Received January 27, 1268

Recent interest in the synthesis and of the physiological activity of aza steroids² prompted us to synthesize a number of aza steroids. The title compounds were synthesized as intermediates. The method of synthesis is analogous to the route used by Bachmann, *et al.*,³ and Johnson, *et al.*,⁴ for the preparation of equilenin.

Experimental Section³

Methyl N-Tosyl-4-keto-1,2,3,4-tetrahydroquinoline-3-glyoxalate (I).—To a suspended solution of 1.7 g of NaOCH₃ in 20 ml of C₆H₆ was added 3.6 g of dimethyl oxalate, and the mixture was heated for 10 min. To the ice-cooled solution was added a solution of 4.5 g of N-tosyl-4-keto-1,2,3,4-tetrahydroquinoline⁶ in 100 ml of C₆H₆ over a 10-min period and the mixture was stirred at room temperature for 15 hr. The mixture was hydrolyzed with H₂O. The organic layer was extracted with 5% NaOH solution and the combined aqueons solution was addified with dilute HCl. The light yellow crystals were filtered off and dried *in vacuo*. Recrystallizations from MeOH gave 5.5 g (94.5%) of I, mp 126– 127°. Anal. (C₁₉H₁₇NO₆S) C, II, N.

N-Tosyl-3-carbomethoxy-4-keto-1,2,3,4-tetrahydroquinoline (II).—A mixture of 5.0 g of I and 2.5 g of powdered soft glass was heated at 200° for 1 hr. After cooling, the mixture was treated with acetone, and the solution was decanted from the glass and evaporated. The residue was recrystallized from MeOH to give 3.36 g (72.5%) of II, mp 123-125°. Anal. (C₁₈H₁₇NO₅S) C, H, N.

N-Tosyl-3-carbomethoxy-3-methyl-4-keto-1,2,3,4-tetrahydroquinoline (III).—To a solution of 1.2 g of Na in 24 ml of MeOH was added a solution of 3.6 g of II in a mixture of 20 ml of MeOH and 20 ml of C_6H_6 . The mixture was refluxed for 15 min, cooled, and treated with 3 ml of MeI. After 30 min at room temperature, an additional 3 ml of MeI was added. The resulting solution was stirred at room temperature for 2 hr, then refluxed for 45 min, cooled, neutralized with AcOH, and evaporated nearly to dryness. The residue was treated with C_6H_6 and H_2O , and the organic layer was washed (saturated NaHCO₃ solution, H_2O), dried (Na₂SO₄), and evaporated to give 3.25 g (86.9%) of crude product. Recrystallization from MeOH gave 1.84 g (49.2%) of pure III, mp 124–125°. Anal. ($C_{19}H_{18}NO_8S$) C, H, N.

N-Tosyl-3-hydroxymethylene-4-keto-1,2,3,4-tetrahydroquinoline (IV).—To a suspension of 1.7 g of NaOCH₃ in 30 ml of C_6H_6

⁽³⁾ Melting points were taken in capillary tubes and are corrected.
(4) M. M. Endicott, B. B. Alden, and M. L. Sherrill, J. Am. Chem. Soc., 68, 1303 (1946).

¹⁵⁾ A. S. Wheeler and W. M. Oats, ibid., 32, 770 (1910).

⁽⁶⁾ C. J. Klemme and J. H. Hunter, J. Org. Chem., 5, 227 (1940).

⁽⁷⁾ K. Kishor, R. Kumar, and S. S. Parmar, J. Med. Chem., 7, 831 (1964).
(8) Ng. Ph. Buu-Hoi, Ng. D. Xuong, Ng. H. Nam, F. Binnon, and R. Royer. J. Chem. Soc., 1358 (1953).

⁽¹⁾ Part H: T. Moriwake, J. Med. Chem., 9, 635 (1966).

⁽²⁾ W. N. Speckamp, H. de Koning, U. K. Pandit, and H. O. Huisman, *Tetrahedron*, **21**, 2517 (1965), and references cited therein.

⁽³⁾ W. E. Bachmann, W. Cole, and A. L. Wilds, J. Am. Chem. Soc., 62, 824 (1940).

⁽⁴⁾ W. S. Johnson, J. W. Petersen, and C. D. Gutsche, *ibid.*, **69**, 2942 (1947).

⁽⁵⁾ All melting points are uncorrected. Microanalyses were performed by Miss T. Nisi. Where analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within $\pm 0.4\%$ of the theoretical values.

⁽⁶⁾ W. S. Johnson, E. L. Wornels, and B. G. Buel, J. Am. Chem. Soc., 71, 1901 (1949).

was added 2.3 g of ethyl formate and was stirred for 10 min. To the ice-cooled mixture was added a solution of 4.5 g of N-tosyl-4keto-1,2,3,4-tetrahydroquinoline in 150 ml of C_6H_6 with stirring and allowed to stir for 18 hr at room temperature. The reaction mixture was hydrolyzed with cold H₂O. The organic layer was extracted (H₂O, dilute NaOH). Acidification of the combined aqueous portion with cold HCl gave 4.1 g (83.7%) of IV, mp 107-110° (from MeOH). Anal. (C₁₇H₁₃NO₄S) C, H, N,

A hot mixture of crude IV and MeOH, when treated with a small amount of HCl, gave N-tosyl-3-methoxymethylene-4-keto-1,2,3,4-tetrahydroquinoline, mp 178–178.5 (from MeOH). Anal. ($C_{18}H_{17}NO_{4}S$) C, H, N.

N-Tosyl-3-ethoxymethylene-4-keto-1,2,3,4-tetrahydroquinoline, mp 129–130.5° (from EtOH), was prepared similarly. Anal. $(C_{19}H_{19}NO_4S)$ C, H, N.

N-Tosyl-1,2,3,4-tetrahydroquinolino[4,3-d]isoxazole (V).—A mixture of 3.3 g of IV, 1.6 g of powdered HONH₂·HCl. and 100 ml of AcOH was stirred for 8 hr at 80–85°. Most of the AcOH was removed under reduced pressure, and the residue was diluted with H₂O and extracted with C₆H₆-Et₂O. The organic layer was washed (saturated NaHCO₃ solution, H₂O). dried (Na₂SO₄), and concentrated to give 2.2 g (67.4%) of V, mp 175–179°. Recrystallization from EtOH gave a pure sample of mp 177–180.5°. Anal. (C₁₇H₁₄N₂O₃S) C, H, N.

N-Tosyl-3-cyano-4-keto-1,2,3,4-tetrahydroquinoline (VI).—A solution of 2.2 g of V in 30 ml of C_6H_6 was added to a cooled solution of 1 g of Na in 40 ml of MeOH. After stirring for 1.5 hr at room temperature, the mixture was treated with H_2O and extracted with 5% NaOH solution. Acidification of the combined aqueous solution with HCl gave 2.1 g (95.5%) of VI, mp 150.5–153° (from EtOH). Anal. (C₁₇H₁₄N₂O₃S) C, H, N.

N-Tosyl-3-cyano-3-methyl-4-keto-1,2,3,4-tetrahydroquinoline (VII). A. Directly from V.—To a solution of 1.0 g of K in 40 ml of t-BuOH was added 1.6 g of V and heated at 60-70° for 10 min. After cooling and adding 7 ml of MeI for 10 min, the reaction mixture was stirred at 60-70° for 3 hr, cooled, neutralized with AcOH, and concentrated *in vacuo*. The residue was treated with C₆H₆ and H₂O. The organic layer was washed (5% NaOH. H₂O) and dried (Na₂SO₄), and the solvent was removed. Recrystallizations from MeOH gave 1.0 g (60.0%) of VII, mp 128-129°. Anal. (C₁₈H₁₆N₂O₃S) C, H, N. B. From VI.—To a solution of 1.0 g of K in 40 ml of *i*-BuOH was

B. From VI.—To a solution of 1.0 g of K in 40 ml of *i*-BuOH was added 1.6 g of VI and heated for 10 min at 65°. After cooling, 7 ml of MeI was added during 10 min and refluxed for 3 hr. cooled. neutralized with AcOH, and evaporated nearly to dryness. The residue was treated with C_6H_6 and H_2O , washed (5% NaOH, H_2O), dried (Na₂SO₄), and concentrated to give 1.0 g (60.0%) of VII.

When the isomerization and methylation of V was carried out by using NaOCH₃, the yield of VII was poor.

Acknowledgment.—The anthors wish to express their appreciation to Miss Teruko Nisida for advice and encouragement in this investigation.

Terpene Compounds as Drugs. IV. Terpenyl Derivatives of Local Anesthetics

Antonio Mantegani, Ernesta Marazzi-Uberti, and Ermanno Zugna

Research Laboratories of Istituto De Angeli S.p.A., Milan, Italy

Received January 15, 1968

In connection with our interest in the field of terpene chemistry we have replaced the alkyl radicals of known local anesthetics, such as benzocaine, procaine, and lidocaine, with terpenyl groups, in order to seek possible changes in the pharmacological properties of the original drugs. The new substances, *i.e.*, farnesyl *p*-aminobenzoate (I), digeranylaminoethyl *p*-aminobenzoate (II), and 2-digeranylamino-2',6'-acetoxylidide (III), lacked local anesthetic activity.

Experimental Section¹

Farnesyl p-Aminobenzoate (I).—A mixture of methyl paminobenzoate (9 g, 0.06 mole), farnesol (13.3 g, 0.06 mole), and NaOMe (0.5 g) was gradually heated over 8 hr to 145° under N₂. The reaction mixture was cooled to room temperature and then taken up in ether, and the ethereal extract was washed (dilute HCl, dilute NaOH, H₂O) until neutral. After drying, the ethereal solution was evaporated and the residue was distilled, giving 6.6 g of an oil, bp 206–211° (0.2 mm). The product was purified by chromatography on silica gel, using C₆H₆-Me₂CO (8:2) as eluent. I (5.4, 26%) was obtained as a colorless oil, n^{25} D 1.5512, R_f (tlc) 0.64.

Anal. Caled for C₂₂H₃₁NO₂: C, 77.37; H, 9.15; N, 4.10. Found: C, 77.42; H, 9.13; N, 4.05.

Digeranylamine occurred as a by-product from the preparation of geranylamine² in a 10-12% yield, viscous colorless oil, bp $135-137^{\circ}$ (0.03 mm).

Anal. Calcd for $C_{20}H_{35}N$: C, 82.97; H, 12.19; N, 4.84. Found: C, 83.04; H, 12.11; N, 4.85.

2-(**Digeranylamino**)ethanol.—A solution of geranyl bromide (86.8 g, 0.4 mole) in anhydrous ether (200 ml) was dropped into a solution of 2-aminoethanol (12.2 g, 0.2 mole) and triethylamine (40.5 g, 0.4 mole) in anhydrous ether (300 ml). The suspension was refluxed for 45 hr, cooled, and washed (H₂O), and the ethereal layer was dried (Na₂SO₄) and evaporated. The residue was distilled to yield a viscous colorless oil (34.6 g, 52%), bp 161–163° (0.025 mm).

Anal. Calcd for $C_{22}H_{39}NO$: C, 79.21; H, 11.78; N, 4.20. Found: C, 79.30; H, 11.75; N, 4.19.

The same product was obtained, but in lower yields, by warming at 110° for 7 hr digeranylamine, ethylene chlorohydrin, and anhydrous pyridine in equimolecular amounts.

Digeranylaminoethyl p-Aminobenzoate (II).—Methyl p-aminobenzoate (6.0 g, 0.04 mole), 2-(digeranylamino)ethanol (13.3 g, 0.04 mole), and NaOMe (0.5 g) were made to react as described in the preparation of I. The crude product obtained was purified by chromatography on silica gel using C_6H_6 -Me₂CO (9:1) as eluent to give II (4.3 g, 24%) as a colorless oil, $n^{25}D$ 1.5455, R_f (tlc) 0.42.

Anal. Calcd for C₂₉H₄₄N₂O₂: C, 76.94; H, 9.80; N, 6.19. Found: C, 77.03; H, 9.88; N, 6.16.

2-Digeranylamino-2',6'-acetoxylidide (III).—A mixture of 2,6-(α -chloroacetoxy)xylidine (9.9 g, 0.05 mole), digeranylamine (14.5 g, 0.05 mole), and anhydrous pyridine (4 g, 0.05 mole) was warmed at 150–160° for 6 hr. After cooling, the reaction product was taken up with H₂O and ether, and the ethereal layer was washed (dilute HCl, H₂O) until neutral. After drying and evaporating, the residue was chromatographed on silica gel, using CHCl₃-Me₂CO (9:1) as eluent. II (6.8 g, 30%) was obtained as a colorless oil, n^{25} D 1.5255, $R_{\rm f}$ (tlc) 0.70.

Anal. Calcd for $C_{30}H_{46}N_2O$: C, 79.95; H, 10.29; N, 6.22. Found: C, 80.01; H, 10.28; N, 6.23.

(1) Boiling points are uncorrected. The $R_{\rm f}$ values were determined on glass chromatostrips coated with silica gel G (Merck); the thin layer chromatograms (tlc) were developed with 85:15 C₆H₆-Me₂CO and the spots. were developed with KMnO₄.

(2) M. S. Kharasch, W. Nudemberg, and E. K. Fields, J. Am. Chem. Soc., 66, 1276 (1944).

Mannich Bases of 4-(Methylthio)phenol and 3-Methyl-4-(methylthio)phenol

MILTON J. KORNET AND MARY JANE LAWRENCE

Department of Pharmaceutical Chemistry, University of Kentucky. Lexington, Kentucky 40506

Received January 5, 1968

Certain phenolic Mannich bases possess quinidine-,¹ ergometrine-,² as well as oxytocin-like³ effects. In this report, we describe the synthesis of several Mannich bases of 4-(methylthio)phenol (I) and 3-methyl-4-(methylthio)phenol (II), the first

⁽¹⁾ Hoffmann-LaRoche and Co., Belgian Patent 549279 (1956).

⁽²⁾ A. Cohen, R. A. Hall, B. Heath-Brown, W. M. Parkes, and A. H. Rees, J. Pharmacol. Chemotherapy. 12, 194 (1957).

⁽³⁾ W. M. Duffin, British Patent 788,196, 788,082, 788,122 (1955); Chem. Abstr., 52, 11941, 11942 (1958).